Collision Cross Sections for Structural Proteomics

Graphical Abstract

Fast collision cross-section calculation of the known structural proteome

Variation in cross section between proteins exceeds experimental resolution

Highlights

- IMPACT allows fast and accurate calculation of collision cross sections
- Structural differences between proteins are larger than IM-MS resolution
- IM-MS enables cross-validation of experimentally derived structures and ensembles
- IMPACT will enable new uses for IM-MS data in structural proteomics

Authors

Erik G. Marklund, Matteo T. Degiacomi, ..., Andrew J. Baldwin, Justin L.P. Benesch

Correspondence

justin.benesch@chem.ox.ac.uk (J.L.P.B.), andrew.baldwin@chem.ox.ac.uk (A.J.B.)

In Brief

Marklund et al. present IMPACT, which rapidly and accurately calculates collision cross sections from structural models. This allows them to interrogate the size and shape variability of proteins. Their approach will enable the application of ion mobility mass spectrometry across structural biology and structural proteomics.

Marklund et al., 2015, Structure 23, 791–799

April 7, 2015 ©2015 Elsevier Ltd All rights reserved

http://dx.doi.org/10.1016/j.str.2015.02.010
Collision Cross Sections for Structural Proteomics

Erik G. Marklund, Matteo T. Degiacomi, Carol V. Robinson, Andrew J. Baldwin, and Justin L.P. Benesch

INTRODUCTION

The function of proteins, and the multi-component complexes they assemble into, is directly related to the structures they adopt and the motions that facilitate their inter-conversion (Robinson et al., 2007; Russel et al., 2009). The twin fields of structural biology and structural genomics have met with considerable success over the last two decades, however many significant structures remain elusive and the conformational heterogeneity important for function remains challenging to access experimentally (Ward et al., 2013). Ion mobility mass spectrometry (IM-MS) provides a means to complement and integrate with existing methodologies, providing information on the stoichiometry and providing a means to complement and integrate with existing methodologies, providing information on the stoichiometry and provides a means to complement and integrate with existing methodologies, providing information on the stoichiometry and [108 times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate assemblies of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists.

SUMMARY

Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10^6 times faster than alternative methods. This allows us to access the CCS space presented by the entire structural proteome, interrogate assemblies of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists.
Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), an algorithm that has been written specifically with structural proteomics applications in mind. To accommodate the varying experiments that contribute to modern “hybrid” structural biology investigations, IMPACT is able to include models derived from X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering (SAXS), and electron microscopy (EM). We show that IMPACT is able to calculate CCSs orders of magnitude more rapidly than previously possible, and that this is achieved without a significant drop in accuracy. We demonstrate this dramatic enhancement in performance by calculating the CCSs of all the proteins in the Protein Data Bank in Europe (PDBe) in just a few hours on a single processor. The results enable us to define a shape factor that reports on how similar a given structure is to others of similar mass, a measurement that will be useful in the characterization of unknown protein assemblies, and as a restraint in hybrid structure modelling. Furthermore, we calculate the CCS distribution of a conformational ensemble of ubiquitin and reveal that its distribution of values is in close agreement with that measured experimentally. Finally, we show that IMPACT is sufficiently fast for on-the-fly calculation of CCSs during molecular dynamics (MD) simulations, providing information complementary to the radius of gyration, revealing IMPACT to be a useful addition to the molecular modelling toolbox. In sum, our work will enable the application of IM-MS across the breadth of structural biology and structural proteomics.

RESULTS

We formulated four principal requirements for a CCS calculator tailored for structural biology: (1) be able to calculate CCS accurately and to a well-defined precision; (2) have the capacity to calculate the CCS of very large biomolecular assemblies; (3) allow the processing of a variety of structural data and models; and (4) do all of this rapidly, enabling routine analysis of large sets of structures. Our solution, IMPACT, is a CCS calculator written from scratch in the C programming language, which can function both as a command-line tool and as a library to facilitate integration with other computational structural biology tools.

High Accuracy Collision Cross Section of Protein Assemblies

As CCS calculations are typically based on a Monte Carlo integration using random numbers, run-to-run variability is expected, the magnitude of which we define as “precision”. To determine the statistical certainty of the result, it is crucial to monitor the convergence of the calculations. We accomplish this in IMPACT by interleaving multiple instances of the calculation with that obtained by the TJM reveals an excellent correlation. The relative error for the 442 structures in the benchmarking dataset is ~1% (inset) and shows no correlation with mass. Overall, the error is lower than the 3% inherent experimental uncertainty when interpreting these values in structural biology applications. See also Figure S1A.

Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), an algorithm that has been written specifically with structural proteomics applications in mind. To accommodate the varying experiments that contribute to modern “hybrid” structural biology investigations, IMPACT is able to include models derived from X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering (SAXS), and electron microscopy (EM). We show that IMPACT is able to calculate CCSs orders of magnitude more rapidly than previously possible, and that this is achieved without a significant drop in accuracy. We demonstrate this dramatic enhancement in performance by calculating the CCSs of all the proteins in the Protein Data Bank in Europe (PDBe) in just a few hours on a single processor. The results enable us to define a shape factor that reports on how similar a given structure is to others of similar mass, a measurement that will be useful in the characterization of unknown protein assemblies, and as a restraint in hybrid structure modelling. Furthermore, we calculate the CCS distribution of a conformational ensemble of ubiquitin and reveal that its distribution of values is in close agreement with that measured experimentally. Finally, we show that IMPACT is sufficiently fast for on-the-fly calculation of CCSs during molecular dynamics (MD) simulations, providing information complementary to the radius of gyration, revealing IMPACT to be a useful addition to the molecular modelling toolbox. In sum, our work will enable the application of IM-MS across the breadth of structural biology and structural proteomics.
and Ruotolo, 2011), IMPACT is equivalently accurate for structural biology applications as the TJM.

IMPACT Calculates Collision Cross Sections with Unprecedented Speed

To achieve high computational performance, we implemented two strategies. First, we separated the calculation of rotation matrices from their application to the atomic coordinates (Supplemental Information) (Williams et al., 2009). In addition, we implemented a strategy that pre-arranges atoms into cuboidal subsections, each of which can in turn be further subdivided, yielding a multilevel “octree” (Figure 2A; Figure S2) (Meagher, 1982), which is a type of data structure for accelerating geometric modelling. For an incoming probe, IMPACT first assesses whether or not it has collided with the bounding box of the outer level of the octree. If so, the smaller boxes contained inside the outer box are interrogated for collision with the probe, and so on, until the deepest level where the atoms are stored is reached. The probe will, in most cases, only hit a minority of boxes, enabling a faster calculation as many atoms can be omitted from the search for collisions. The process of subdivision adds overhead to the calculation, however for assemblies > 100 kDa (Table S2) such as the ribosome (protein and nucleic acid, 2.4 MDa), satellite tobacco necrosis virus (STNV; capsid, genome, salt, and water; 1.8 MDa), the vault (3.5 MDa), and the adenovirus capsid (89 MDa), we obtained an additional acceleration up to 20-fold (Figure 2B; Supplemental Information). Importantly, the introduction of octrees does not result in a loss of accuracy, returning the same CCS values as without. We find that there is a strong correlation between the number of atoms and the optimal number of subdivisions (maximum octree depth) (Figure S2D), which is exploited by IMPACT at runtime for maximum performance.

To test the impact of these strategies we performed a benchmark between IMPACT and other available CCS calculators (Supplemental Information), using the 170 kDa asymmetric unit from the Norwalk virus capsid protein (PDB code 1IHM) to compare with other studies (Bleiholder et al., 2011; Paizs, 2014). We find that to approach a precision of 1%, the TJM requires 17 hr, and the EHSS 28 min. The time taken for the PA varies between different implementations, with the fastest existing form converging in 0.43 s. By comparison, IMPACT requires only 70 ms to reach completion. The speed improvement of IMPACT is therefore substantial, ranging approximately between one and six orders of magnitude compared with alternative CCS calculators (Figure 2C). Notably, disk access constitutes approximately 20% of IMPACT’s wall time for these calculations, indicating that when data are supplied from a coordinate file, rather than being available and properly formatted in random-access memory, the performance of IMPACT is close to the unavoidable limitations posed by the hardware.

The Structural Proteome Displays Significant Variation in Collision Cross Section

The accuracy, precision, and speed of IMPACT allow us to interrogate large structural datasets. We therefore set out to determine the CCS for all the biological assemblies in the PDBe
Figure 3. The Structural Proteome Displays Large Variations in CCS
(A) Histogram of CCS values of the 266,516 protein assemblies in the PDBe calculated using IMPACT. A clear trend can be seen that follows $\Omega_{eff} = 0.457m^{2/3} \text{Å}^2$ (black, determined from the curated PiQSi dataset, Figure S3), which follows the expected scaling law for CCSs.
(B) A slice through this histogram at 80–90 kDa shows the variation in CCS without most of the inherent mass dependence. The large variation reveals the distinguishing power of IM-MS.
(C) The PDBe data expressed using shape factor u (upper panel) and the relative SD of u as a function of mass (lower panel). The variations that are observed across the whole mass range are considerably greater than both the experimental error and instrument resolution, which are approximately 3% and 2%, respectively, and reveal that the discriminatory power of the IM-MS approach increases with molecular mass.

(A) The PDBe data expressed using shape factor u (upper panel) and the relative SD of u as a function of mass (lower panel). The variations that are observed across the whole mass range are considerably greater than both the experimental error and instrument resolution, which are approximately 3% and 2%, respectively, and reveal that the discriminatory power of the IM-MS approach increases with molecular mass.

(B) A slice through this histogram at 80–90 kDa shows the variation in CCS without most of the inherent mass dependence. The large variation reveals the distinguishing power of IM-MS.

(C) The PDBe data expressed using shape factor u (upper panel) and the relative SD of u as a function of mass (lower panel). The variations that are observed across the whole mass range are considerably greater than both the experimental error and instrument resolution, which are approximately 3% and 2%, respectively, and reveal that the discriminatory power of the IM-MS approach increases with molecular mass.

See also Figure S3.
Even though the CCS provides useful information about the structure of a given protein, it is not sufficient for complete atomistic structure determination. Hence, IM-MS is most useful for structural biology when combined with other structural data. For IMPACT to be of wide practical utility, it is therefore important that it can accept inputs from a variety of experimental sources. Consequently we designed it such that the CCSs of coarse-grained models, including those obtained from SAXS or EM (Figure 4A), can be determined by allowing for custom atomic radii to be read from a parameter file. To exemplify the utility of this feature, we created bead models from an EM density map of GroEL (EMDataBank code 1457) by placing beads at all voxels that had an electron density above a specified threshold. By repeating this procedure at different thresholds, we obtained 500 bead models varying in volume and calculated their CCSs (Figure 4A). We find that the CCSs increase with increasing volume and, when imposing a protein density of 0.87 Da/Å³ (Fischer et al., 2004), the model with a volume corresponding to the mass of GroEL (801 kDa, 943,000 Å³) gave a CCS that closely matched the crystal structure (PDB code 1OEL) (Figure 4A). At larger volumes, the CCS increased sharply, suggesting that CCS is sensitive to artefacts resulting from overfilling of the EM map, and might therefore be an effective alternative means for thresholding EM data.

Ab initio bead models can also be constructed from SAXS data, in a process that typically involves the pooling of several separate simulations to form an average structure, and filtered such that they match a specified target volume. Using the ATSAS package (Svergun et al., 1995; Volkov and Svergun, 2003), we generated 100 bead models from simulated SAXS data of GroEL, using a range of different target volumes (Figure 4A). We found that the CCSs calculated for the resulting models increased approximately linearly with volume. Notably, the given the mass, which is itself an outcome of the IM-MS experiment, \(\omega \) is equal to unity when a protein has structural characteristics of an “average” protein at that given mass, <1 when a protein is more compact, and >1 when it is more extended than typical (e.g. high aspect ratio or containing a cavity). Similar to other shape factors in the physical sciences, by enabling comparison to the average, \(\omega \) can therefore be used to provide gross structural information on an unknown (Hewitt et al., 2014).

Examining \(\omega \) as a function of mass provides an overview of the distribution of protein shapes in the PDBs (Figure 3C). In the mass range <200 kDa, the distribution of \(\omega \) is centered close to unity, increasing slightly with mass. In this same range, the relative SD, \(\sigma_\omega \), is ~10%, indicating that there are considerable structural variations between proteins of similar mass. Above 200 kDa, where PDBe data are sparser, \(\omega \) and \(\sigma_\omega \) both increase markedly. Notably, the variation of 10% or more is significantly in excess of the typical resolution (~2.5%) of modern IM-MS instrumentation used in the study of protein assemblies (Zhong et al., 2011) and discrepancy (~3%) between CCS measurement and estimation (Benesch and Ruotolo, 2011). This indicates the discriminatory ability of not just CCS as a structural quantity but also the utility of current IM-MS experiments. These results suggest that the shape factor is a suitable means to distinguish between types of structure in known proteins, and potentially useful for relating proteins of unknown structure to structural homologues in the PDBe.

Using Collision Cross Sections in Integrative Structural Biology

Even though the CCS provides useful information about the structure of a given protein, it is not sufficient for complete atomistic structure determination. Hence, IM-MS is most useful for structural biology when combined with other structural data. For IMPACT to be of wide practical utility, it is therefore important that it can accept inputs from a variety of experimental sources. Consequently we designed it such that the CCSs of coarse-grained models, including those obtained from SAXS or EM (Figure 4A), can be determined by allowing for custom atomic radii to be read from a parameter file. To exemplify the utility of this feature, we created bead models from an EM density map of GroEL (EMDataBank code 1457) by placing beads at all voxels that had an electron density above a specified threshold. By repeating this procedure at different thresholds, we obtained 500 bead models varying in volume and calculated their CCSs (Figure 4A). We find that the CCSs increase with increasing volume and, when imposing a protein density of 0.87 Da/Å³ (Fischer et al., 2004), the model with a volume corresponding to the mass of GroEL (801 kDa, 943,000 Å³) gave a CCS that closely matched the crystal structure (PDB code 1OEL) (Figure 4A). At larger volumes, the CCS increased sharply, suggesting that CCS is sensitive to artefacts resulting from overfilling of the EM map, and might therefore be an effective alternative means for thresholding EM data.

Ab initio bead models can also be constructed from SAXS data, in a process that typically involves the pooling of several separate simulations to form an average structure, and filtered such that they match a specified target volume. Using the ATSAS package (Svergun et al., 1995; Volkov and Svergun, 2003), we generated 100 bead models from simulated SAXS data of GroEL, using a range of different target volumes (Figure 4A). We found that the CCSs calculated for the resulting models increased approximately linearly with volume. Notably, the
model that best matched the mass of GroEL had a CCS 17% lower than the X-ray structure, whereas the model that best matched the CCS of the X-ray structure gave a volume 75% larger than expected. For the latter case, the large volume can in part be attributed to cavities in GroEL being filled up by beads (Figure 4A, inset), which has little impact on the CCS. The results therefore indicate that CCS holds structural information that is complementary to the SAXS data, and might therefore be used to support ab initio modelling.

Enabling Collision Cross Sections for Assessment of Structural Dynamics
IM-MS measurements record a snapshot of the structural ensemble present in solution, thereby intrinsically reflecting not just the predominantly populated state of the protein but also minor conformers (Wytenbach et al., 2014). The speed of IMPACT allows us to analyze structural ensembles, collections of structures that aim to encompass all the conformers dynamically populated at equilibrium. IM-MS measurements of protein and protein complex ions reveal CCS distributions considerably wider than the instrumental resolution (Koeniger et al., 2006; Zhong et al., 2011). In addition, the widths of these distributions are sensitive to experimental conditions that affect the conformational flexibility in solution (Zhong et al., 2014; Zhou et al., 2014). These observations indicate how IM-MS is sensitive to the structural dynamics of proteins (Wytenbach et al., 2014). To investigate this quantitatively, we examined two protein ensembles generated from NMR spectroscopy data for the small protein ubiquitin (PDB codes 2K39 (Lange et al., 2008) and 2KOX (Bryn Fenwick et al., 2011)). Calculating the CCS distribution of these ensembles reveals only a minor difference in mean CCS between them (\(\bar{CCS}_{2K39} = 1052 \text{ Å}^2 \); \(\bar{CCS}_{2KOX} = 1031 \text{ Å}^2 \)), and a close correspondence with that obtained from IM-MS (\(\bar{CCS}_{IM} = 1000 \text{ Å}^2 \)) (Wytenbach and Bowers, 2011). There is however significant variation in the width of the CCS distributions, with 2K39 notably wider than the more recently refined 2KOX. Comparison with experimental CCSs reveals much closer correspondence with the latter. This demonstrates that our approach can be used to enable the experimental quantification of conformational heterogeneity and cross-validation of structural ensembles.

The performance of IMPACT suggests that CCS values could be calculated on the fly during MD simulations without unduly retarding their progress. To investigate this possibility we calculated the CCS for a short MD trajectory of lysozyme in the gas phase (Malklud et al., 2009) every 10 ps (Figure 4C) to a precision of 0.5%. This single-core calculation for 1,500 structures took 1 min. By comparison, the simulations had been run on several processors for several weeks, confirming IMPACT’s ability to restrain MD simulations with IM-MS data. Because CCS calculations have been a limiting factor, attempts to integrate IM data into MD simulations have previously been done by approximating the CCS to the squared radius of gyration, \(R_g^2 \), which is more readily computed (Chirot et al., 2012). A plot of \(R_g^2 \) versus CCS for the trajectory analyzed here reveals only a weak correlation, \(R^2 = 0.73 \) (\(R^2 = 0.73 \) also for \(R_g \) versus CCS) (Figure 4D). This indicates that the two parameters are not generally interchangeable as restraints. Together, these observations demonstrate the potential for enabling the use of IM data to restrain MD simulations of macromolecules by CCS directly in order to focus the sampling to conformations that comply with experimental observations.

DISCUSSION
Recent methodological advances have enabled IM-MS measurements to be made across a wide variety of proteins, including some of the most challenging of biological assemblies (Benesch and Ruotolo, 2011; Konijnenberg et al., 2013; Sharon, 2013; Stengel et al., 2012; Thalassinos et al., 2013; Zhou and Robinson, 2014). It is well known that the conformations of folded proteins and protein assemblies are well reflected in the gas-phase ensemble obtained on the timescale of typical IM-MS experiments (Breuker and McLafferty, 2008; Ruotolo and Robinson, 2006). At first glance this may seem to conflict with the seemingly low effective densities inferred from gas-phase experiments. However, by analyzing all biological assemblies in the PDBs and PiQSI, we were able to reproduce the experimentally inferred gas-phase density of proteins, which shows that the low apparent density can be explained as a direct consequence of the simplistic way densities have been inferred from CCS. As such, our analysis resolves this apparent inconsistency with the effective gas-phase protein density being lower than the density of crystal structures and shows that the reported results are consistent with proteins remaining native-like in vacuum on the timescale of the IM experiment.

From our analyses, we found that the spread in CCS at any given mass of the PDBs is significantly in excess of the resolution of modern IM-MS instrumentation. We have introduced the shape factor \(\omega \) in order to assess the averageness of a measured CCS relative to the structural proteome. The variation in shape factor increases with mass such that CCS is more discriminatory for larger molecules, which may explain why other studies have found the CCS to be relatively insensitive for small protein assemblies (Karaca and Bonvin, 2013). Moreover, if the spread of the shape factor were explained by overall shape anisotropy alone, for which IM is relatively insensitive (Hewitt et al., 2014), then the typical protein would need to have one dimension several times shorter or longer than the others. This suggests that the CCSs also reflect finer levels of protein structure. While these results indicate that the CCS represents a useful structural restraint for molecular modelling, we have also demonstrated by comparison with NMR data that experimentally derived CCS distributions can hold information about the conformational ensemble that can be inferred from IM spectra. This is consistent with the observation of apparent resolving powers observed for a protein complex being lower than for small molecules (Zhong et al., 2011), the presence of conformations that do not interconvert on the IM timescale (Koeniger et al., 2006), and the visibility of solution-phase effects in the IM peak widths (Zhong et al., 2014; Zhou et al., 2014).

We have shown that the CCS provides information distinct from that given by the \(R_g \), rendering it potentially useful for restraining MD simulations. Furthermore, the performance of IMPACT is such that calculating CCS during the MD trajectory does not add significant overhead to the simulation. However, two additional factors will need to be taken into consideration when calculating the CCS of some proteins: the possibility of
“collapse” in the gas phase of intrinsically disordered (Pagel et al., 2013) or hinging (Hogan et al., 2011) regions; and different scattering characteristics associated with extended or unusually concave surfaces (Bleiholder et al., 2011). The former consideration affects the accuracy of all methods for CCS calculations and the latter also applies to experiments in which the protein is intentionally unfolded in the gas phase prior to IM measurement (Hopper and Oldham, 2009; Ruotolo et al., 2007; Laganowsky et al., 2014). Future investigations will allow refinement of the CCS calculation procedure to accommodate the possibility of such effects.

In summary, we have demonstrated that our CCS calculator, IMPACT, is well suited to the varied demands of modern structural biology and structural proteomics. It is capable of estimating the CCS of proteins and protein assemblies from both atomic coordinates and low-resolution structural information. IMPACT furthermore displays a dramatic advantage in terms of speed (up to 10^4-fold) relative to alternative methods, without compromising on the accuracy of the final measurement. By employing IMPACT to examine the complete structural proteome, as well as specific structural biology data, we have demonstrated that IM has the capability to be a very useful approach for the biosciences: in its own right, as a validation tool, and also as a tool to search within for proteins with similar mass, CCS, and/or atomic coordinates. IMPACT is currently capable of reading xyz and pdb files with single or multiple models. Atomic radii can optionally be read from a separate file, which effectively allows for the processing of both all-atom and coarse-grained models as described elsewhere in this article, or combinations thereof.

EXPERIMENTAL PROCEDURES

IMPACT is written in the C programming language and builds into both a library for linking with other software and a standalone command-line tool for Windows, Linux/UNIX, and Mac OS X. all available for download at http://impact.chem.ox.ac.uk/, together with documentation for usage and installation. Also available are a list of CCSs for all proteins in the PDBe, as well as a tool to search within for proteins with similar mass, CCS, and/or atomic coordinates. IMPACT is currently capable of reading xyz and pdb files with single or multiple models. Atomic radii can optionally be read from a separate file, which effectively allows for the processing of both all-atom and coarse-grained models as described elsewhere in this article, or combinations thereof.

General Computation Details

Many of the underlying concepts are illustrated in Figure 2, and the process flow of IMPACT is described in a flow chart in Figure S2. The theoretical considerations for the calculation and conditions for convergence are described in detail in the Supplementary Experimental Procedures. Unless explicitly specified, we ran all calculations under the following conditions.

- We performed computations on a single core of an Intel Xeon CPU E5-2680 2.70 GHz processor (except for CCSCalc, which was run under Windows on a 2.9 GHz Intel i7 processor). All our IMPACT calculations were, unless explicitly stated, performed at optimal octree depth D (see Figure S2D), with N = 32 replicas, target precision \(\tau = 1\% \), and \(k = 16 \) shots per rotation. We did not rigorously optimize the parameter \(k \), as it has negligible effect on the wall time.
- Other than the calculations underpinning the initial comparison with the TJM (Figure 1B), CCSs reported from IMPACT are not “raw” PA values, but the result of calibration according to \(\Delta_{\text{TJM}} = 0.843 \times \varphi_{\text{IMPACT}}^{1.02} \).
- When parsing pdb files, we omitted all HETATM records (i.e., atoms belonging to nonstandard residues) and hydrogen atoms from CCS calculations. Although they can be specified by the user, we took effective atomic cross-sectional radii to be 2.91 Å for all remaining atoms for interaction with a 1.0-Å probe particle (corresponding to a helium atom), which closely resemble those used for biomolecules (Williams et al., 2009).
- We carried out TJM, EHSS, and additional PA calculations using MOBCAL (Mesleh et al., 1996), employing default parameters and unmodified source code with the following exceptions: increasing memory buffers for storing molecular data to accommodate large biomolecules; doubling the upper integration limit of the impact parameter; and setting the number of replicas to one per run. We measured wall times with the Linux/UNIX “time” command (or by reading the Windows system time immediately before and after execution in the case of CCSCalc). Further details concerning the processing of specific data-sets are given in the Supplemental Experimental Procedures.

As a number of replicas are taken in the calculation, these \(N \) independent estimates of the CCS mark a convenient point for parallelization, which we have implemented in IMPACT to allow several computing cores to simultaneously take part in the Monte Carlo integration. For better comparison with other software and for more transferable performance benchmarks, we only report single-core calculations in the rest of the manuscript. The demonstrated performance can therefore be seen as a lower limit, with multi-core calculations being considerably faster.

Defining Resolution and Resolving Power

The distinguishing power of IM instruments is often expressed as the resolving power \(R = \lambda / \text{FWHM}_C \), where FWHM_C is the full width at half peak maximum. The resolution in turn is the inverse resolving power, 1/R. Travelling-wave instruments can have a resolving power of 40 in CCS (Zhong et al., 2011), corresponding to a resolution of 0.025 or 2.5%.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two tables, three figures, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.str.2015.02.010.

AUTHOR CONTRIBUTIONS

E.G.M. wrote the IMPACT algorithm, performed the calculations, and analyzed the data. M.T.D. developed the algorithm for conversion of EM data. A.J.B. performed the initial work on accelerating CCS calculations. E.G.M., A.J.B., and J.L.P.B. designed the experiment and derived the relevant theory. All authors contributed to writing the manuscript.

ACKNOWLEDGMENTS

We thank Christian Bleiholder (Florida State University) and Michael T. Bowers (University of California, Santa Barbara) for providing datasets for benchmarking, and insightful discussions. We thank Keith Richardson (Waters Corp.) for insight into his CCS calculation approaches and helpful suggestions. We thank Gerard Kleywegt and Sameer Velankar (EMBL–EBI) for providing the assembled contents of PDBe. E.G.M. is supported by The Carl Trygger Foundation for Scientific Research, the Swedish Royal Academy of Sciences, and Helge Ax:son Johnson Foundation; M.T.D. is supported by the Swiss National Science Foundation, C.V.R. is a Royal Society Professor, A.J.B. holds a David Phillips Fellowship from the BBSRC, and J.L.P.B. holds a Royal Society University Research Fellowship. C.V.R. and J.L.P.B. thank the Medical Research Council for funding through the Confidence in Concept scheme; J.L.P.B. thanks the Biotechnology and Biological Sciences Research Council for grant BB/K004247/1.

Received: December 23, 2014
Revised: February 13, 2015
Accepted: February 18, 2015
Published: March 19, 2015

REFERENCES

