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Abstract

Spin and spatial tensor manipulations are frequently required to describe the theory of NMR experiments. A Mathematica pack-
age is presented here, which provides some of the most common functions for these calculations. Examples are the calculation of
matrix representations of operators, commutators, projections, rotations, Redfield matrix elements, matrix decomposition into basis
operators, change of basis, coherence filtering, and the manipulation of Hamiltonians. The calculations can be performed for any
spin system, containing spins 1/2 and quadrupolar spins alike, subject to computational limitations. The package will be available
from http://www.nyu.edu/projects/jerschow/ upon acceptance of the article.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Mathematica is a widely used program for perform-
ing symbolic calculations [1]. A popular package written
for Mathematica is POMA, which can be used for
applying product operator transformation rules [2,3].
Its area of application is, however, limited to weakly
coupled spin 1/2 systems. The purpose of the package
described here is to provide more general applicability,
and to offer functions that can be used with any spin sys-
tem, for both liquid- and solid-state NMR tasks.

In contrast to numerical packages, such as Gamma
[4], and SIMPSON [5], the emphasis here is on symbolic
computations. While the former allow one to simulate
the outcome of NMR experiments, the latter approach
is useful in the design of such experiments, and in the
derivation of the underlying theory. Frequently, theoret-
ical models have to be developed to analyze the data ob-
tained from NMR experiments. A good example for
such a situation is the analysis of relaxation data, in
which the Redfield coefficients have to be determined
as a function of the nature of the spin system and
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depending on the interactions that are responsible for
relaxation.
2. Products of tensor operators

In NMR we frequently decompose the density matrix
in terms of basis operators Qi as [6]

q ¼
X
i

miQi ð1Þ

with the convenient property of orthogonality

hQjjQii ¼ Tr Qy
jQi

� �
¼ aidij; ð2Þ

where dij is the Kronecker delta. If ai = 1 the operators
are said to be normalized, but this is not necessarily al-
ways a good choice of basis. The operators are chosen to
be orthogonal, so that one may determine how much
each basis operator is contributing to a given density
matrix, via the inverse of Eq. (1)

mi ¼ hQijqi=ai. ð3Þ
In a multi-spin system composed of the spins

I1, I2, . . . , In a convenient way of choosing the basis oper-
ators is by employing the outer product � to link the
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individual subspaces of the spins. A basis operator is
then composed of a direct product of the basis operators
of the subspaces

Qi ¼ Qð1Þ
i � Qð2Þ

i � � � �QðnÞ
i . ð4Þ

Often, one omits writing the symbol � in these
expressions. One also normally omits writing the iden-
tity operators in such products.

The most convenient way of spanning the subspaces
is to use either spherical tensors

QðjÞ
i ¼ T ðjÞ

Li ;Mi
ð5Þ

or cartesian tensors

QðjÞ
i 2 E; Ix; Iy ; Iz

� �
; ð6Þ

where E is the identity operator.
Cartesian operators are less convenient for quadrupo-

lar nuclei, since they do not span the whole space without
considering products and sums of these operators.

The nonzero matrix elements for the cartesian opera-
tors are defined as [7,8]

hmþ 1jIþjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ � mðmþ 1Þ

p
hmþ 1jI�jmi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ � mðm� 1Þ

p
hmjIzjmi ¼ m

ð7Þ

and Ix = (I+ + I�)/2 and Iy = i (I��I+)/2.
The package provides spherical tensor operators

using two common conventions [9], T ðaÞ
L;M and T ðbÞ

L;M . The
nonzero matrix elements of these are defined as

hmþM jT ðaÞ
L;M jmi ¼ hIm; LM jIðmþMÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2I þ 1

r
ð8Þ

and

hmþM jT ðbÞ
L;M jmi ¼ hIm; LM jIðmþMÞiL!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2I þ Lþ 1Þ!
2Lð2LÞ!ð2I � LÞ!ð2I þ 1Þ

s
; ð9Þ

which differ in their normalizations.
The use of T ðaÞ

L;M is convenient for creating tensor oper-
ators which are automatically normalized, according to
TrðT ðaÞy

L;MT
ðaÞ
L;MÞ ¼ 1 (including T ðaÞ

00 ¼ E=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 1

p
, where E

is the identity matrix).
The use of T ðbÞ

L;M is convenient as it more properly cor-
responds to the operators used in NMR, i.e., Iz ¼ T ðbÞ

1;0,
and E ¼ T ðbÞ

0;0. It also provides the spin-independent rela-
tionship of I� ¼ �

ffiffiffi
2

p
T ðbÞ

1;�. Using this normalization,
one may also couple tensors acting on the same space
easily according to

T ðbÞ
L;M ¼

X
m1;m2

hl1m1; l2m2jLMiT ðbÞ
l1;m1

T ðbÞ
l2;m2

ð10Þ

without the need for additional Wigner coefficients.
The mrep function produces the matrix representa-

tions of these operators based on notation b, which cor-
responds to the regular NMR tensors. In the following
the superscript b will be dropped. Individual tensors
using the alternate normalization can be produced using
the function sphtens.
3. Operator representation and setting up the spin system

The operators can be represented in terms of products
of individual spin operators (using the dot product �.�), or
in terms of a single operator. For example,
ispinT[1,2,�1].ispinT[3,1,�1] describes a
product operator between a spherical tensor T2,�1 of spin
one and a tensor T1,�1 of spin 3. This can alternatively be
represented by spinT[2,�1,0,0,1,�1] in a three-
spin system (the second spin having rank zero as well as
order zero, which is equivalent to the identity operator
in the normalization used in the package). Likewise, the
cartesian tensor expressions ispinC[1,x].ispinC

[3,z] and spinC[x,e,z] represent the same
operator, namely I1xI3z. In addition, the raising and low-
ering operators are defined as ispinC[i,p]=I+, and
ispinC[i,m]=I�. Even though they are not cartesian
tensors, it seemed appropriate, for the sake of simplicity,
to implement them through the ispinC command.

To facilitate the examination of the Mathematica cal-
culations, use is made of output formatting options,
such that the operator ispinC[i,x] is represented
as Iix, as is customary, ispinC[i,p] is shown as Ii+,
ispinC[i,m] is shown as Ii�. An operator ispinT

[i,L,M] is represented in the output as T ðiÞ
L;M .

To be able to calculate the matrix representations of
the operators it is necessary to define the spin system. This
is done by the command setSpinSys[I1,I2, . . .],
where I1,I2, etc., are the spin values of the nuclei in
the spin system.

Probably the most useful command is mrep[expr],
which calculates the matrix representations of an expres-
sion expr containing the operators in the forms of
spinT, spinC, ispinT, or ispinC or products there-
of, so for example the statements

<<MathNMR.m
setSpinSys[1,1/2]

mrep[ispinT[1,2,1].ispinC[2,x]]

produce the matrix

0 0 0 1
2
ffiffi
2

p 0 0

0 0 1
2
ffiffi
2

p 0 0 0

0 0 0 0 0 �1
2
ffiffi
2

p

0 0 0 0 �1
2
ffiffi
2

p 0

0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
. ð11Þ
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for the spin system consisting of a spin 1 and a spin 1/2
nucleus. The command <<MathNMR.m reads in the
package. Single-transition operators are provided
through the function ispinST[i,m1,m], which rep-
resent transitions between the levels m1 and m for a par-
ticular spin.
4. Commutators, basis decomposition, change of basis,

projection operators, and coherence order filtering

A commonly used task is to change bases, or to deter-
mine the basis decomposition of an operator expression,
or a matrix representation. This is achieved by the com-
mands spinCDecomposition and spinTDecompo-

sition, which gives the basis decomposition in terms
of cartesian or spherical tensor operators, respectively.
The following example calculates the decomposition of
the operator T ð1Þ

2;1.I2x in terms of spherical tensor
operators.

setSpinSys[1,1/2]

out=mrep[ispinT[1,2,1].ispinC[2,x]]

decomp=spinTDecomposition[out]

produces

1ffiffiffi
2

p T ð1Þ
2;1.T

ð2Þ
1;�1 � T ð1Þ

2;1.T
ð2Þ
1;1

� �
. ð12Þ

The command commutator[A,B] produces the
commutator between the matrices A and B. For conve-
nience, if the operator decomposition is required, the
commands spinCCommutator and spinTCommuta-

tor are provided.
The statements

setSpinSys[{1, 1/2}]
spinTCommutator[ispinT[1,2,1]

.ispinC[2, x],

ispinT[1,2,0]. ispinC[2,y]]

produce

T ð1Þ
2;1.I2x; T

ð1Þ
2;0.I2y

h i
¼ i

2
ffiffiffi
6

p T ð1Þ
2;1.T

ð2Þ
1;0. ð13Þ

Frequently, one requires a representation using the I±
operators instead of T1,±1. The command convertT-

topm replaces the operators T1,0, and T1,±1 by their
counterparts of Iz, I± with the appropriate scaling
factors.

The command

convertTtoPM[ispinT[1,1,1].

ispinT[2,1,�1]]
produces

�1
2
I1þ.I2�. ð14Þ

Another example illustrates the representation of the
pseudo-pure state [10] in this spin 1–spin 1/2 system.
One of these states can be obtained by writing

a=mrep[ispinST[1,�1,�1].ispinST[2,

�1/2,�1/2]]

which gives

a ¼

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
. ð15Þ

spinTDecomposition[a] then produces

1
12
½2Eþ6T ð1Þ

1;0.T
ð2Þ
1;0�2

ffiffiffi
6

p
T ð1Þ

2;0.T
ð2Þ
1;0�3T ð1Þ

1;0þ
ffiffiffi
6

p
T ð1Þ

2;0�4T ð2Þ
1;0�.
ð16Þ

One may project operator expressions and matrix
representations onto subspaces of the Hilbert space by
using the functions projectionOp andoneMinus-
ProjectionOp. The commands

a = ispinST[1,�1,0].ispinC[2,x]

+(1/2)ispinST[1,0, 1].ispinC[2,y]

a = mrep[a]

b=projectionOp[{ispinT[1, 2,2]

.ispinT[2,1,1],

ispinT[1,1,1].ispinT[2,1,1]},a]
out = spinTDecomposition[b]

produce

2� i

4
ffiffiffi
2

p T ð1Þ
1;1.T

ð2Þ
1;1

h i
; ð17Þ

which represents the projection of operator a containing
the single transitions as above onto the subspace
spanned by fT ð1Þ

2;2.T
ð2Þ
1;1; T

ð1Þ
1;1.T

ð2Þ
1;1g.

We can obtain the projection onto the space outside
of this subspace by using

b=oneMinusProjectionOp[{ispinT[1,2,2]
.ispinT[2,1,1],

ispinT[1,1,1].ispinT[2,1,1]},a]

in which case the result for out will be

1
8
�ð2þ iÞ

ffiffiffi
2

p
T ð1Þ

1;1.T
ð2Þ
1;�1þð4�2iÞT ð1Þ

2;1.T
ð2Þ
1;�1�ð4þ2iÞT ð1Þ

2;1.T
ð2Þ
1;1

h i
.

ð18Þ

The function filterCoherence[p1,p2, . . .,
expr] filters the operator expression expr for terms
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that have coherence orders p1, p2, etc. for the individual
spins. The statements

a=ispinT[1,1, 1].ispinT[2,1,1]

+ispinT[1,2,2].ispinT[2,1,1]

+ispinT[1,2,2].ispinT[2,1,0]
filterCoherence[{2,1},a]

produces T ð1Þ
2;2.T

ð2Þ
1;1. One can also supply the keyword any

which allows any coherence order for a particular spin.
For example

filterCoherence[{2,any},a]

produces T ð1Þ
2;2.T

ð2Þ
1;1 þ T ð1Þ

2;2.T
ð2Þ
1;0 instead. This function is use-

ful, for example, for obtaining secular components of
Hamiltonians (by setting the coherence orders to zero).
If coherence filtering is required for a matrix mtx rather
than operators, the expression cohfltM[p1,p2,

. . .]*mtx can be used.
5. Spatial tensors

Spatial tensors are implemented in Mathematica as
functions. For example, the tensor for the dipolar cou-
pling between spins i and j is input as wD[i,j,m],
and each of the m-components can be assigned a value.
To facilitate display, an output form is defined to show
the component as xði;jÞ

D;m. Similarly, the CSA tensors are
input as wcsa[i,m] and output as xðiÞ

CSA;m, and the

quadrupolar tensors as wQ[i,m] and xðiÞ
Q;m, respec-

tively. The J-coupling constants are input as J[i,j]

and output as J(i,j), and the isotropic chemical shift is

set via wiso[i] and output as xðiÞ
iso.

While an object-oriented implementation of these
tensors would seem most practical (as, for example,
in GAMMA [4]), in particular with respect to assign-
ment, copying, and rotating tensors, Mathematica does
not support objects very well, at least not in a conve-
nient manner. It was therefore decided to implement
these tensors as functions. The function copyTen-

sor[a,b] can be used to copy tensor a to tensor b.
The function makeSpatialD[wD,i,j,d,a,b,c]
produces a spatial dipolar coupling tensor in
wD[i,j] with the coupling constant d, rotated from
its principal axis frame by the Euler angles a,b,c (vide
infra). Similarly, makeSpatialCSA and makeSpa-

tialQ can be used for the CSA and the quadrupolar
interactions.
6. Hamiltonians

makeHDD[i,j] creates a Hamiltonian for the dipo-
lar coupling between spins i and j, according to
H ði;jÞ
D ¼

X2

m¼�2

ð�1Þmxði;jÞ
D;�m

ffiffiffi
6

p
T ði;jÞ

2;m ; ð19Þ

where

T ði;jÞ
2;0 ¼ 1ffiffiffi

6
p 3I i;zI j;z � I i � Ij

� �
;

T ði;jÞ
2;�1 ¼ �1

2
I i;�Ij;z þ I i;zI j;�
� �

;

T ði;jÞ
2;�2 ¼ 1

2
I i;�I j;�.

ð20Þ

The spatial tensor components xði;jÞ
D;m are obtained via a

rotation from the principal axis system (PAS), in which
the only nonzero component is xði;jÞ;PAS

D;0 ¼ � l0
4p

cicj�h
r3 [11]

in angular frequency units. If the tensor is created via
makeSpatialD the correct values are set automatically.

makeHDD[i,j,m] creates the m-order component,
so for example the command

makeHDD[1,2,0]

produces

xð1;2Þ
D;0 T ð1Þ

1;�1.T
ð2Þ
1;1 þ 2T ð1Þ

1;0.T
ð2Þ
1;0 þ T ð1Þ

1;1.T
ð2Þ
1;�1

h i
. ð21Þ

Using

convertTtoPM[makeHDD[1,2,0]]

one obtains the more familiar form

1
2
xð1;2Þ

D;0 4I1z.I2z � I1þ.I2� � I1�.I2þ½ �. ð22Þ

makeHCSiso[i] produces the isotropic shift Ham-
iltonian and makeHCSA[i] produces the second-rank
chemical shift anisotropy (CSA) Hamiltonian for spin
i according to
HCSA ¼ xCSA;0I z þ
ffiffiffi
3

8

r
xCSA;�1Iþ �

ffiffiffi
3

8

r
xCSA;1I�; ð23Þ

where, in the PAS system,

xCSA;0 ¼ dCSA;

xCSA;�1 ¼ 0;

xCSA;�2 ¼
dCSAgffiffiffi

6
p ; ð24Þ

and dCSA is the principal component of the tensor in the
PAS given in radians, and g is the anisotropy factor [11].
The components are automatically set correctly if
makeSpatialCSA is used.

makeHJ[i,j] makes the J-coupling Hamiltonian
according to

Hi;j
J ¼ 2pJ ði;jÞI i � Ij. ð25Þ

makeHQ[i] produces the quadrupolar Hamiltonian for
spin i according to

H ðiÞ
Q ¼

Xm
m¼�2

ð�1ÞmxðiÞ
Q;�mT

ðiÞ
2;m; ð26Þ
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where, using the common definition of xQ ¼ 2pCQ

2Ið2I�1Þ [12]
the tensor components in the PAS are

xQ;0 ¼
ffiffiffi
3

2

r
xQ;

xQ;�1 ¼ 0;

xQ;�2 ¼ xQg=2. ð27Þ

The components are automatically set correctly if
makeSpatialQ is used.
7. Rotations and pulses

7.1. Rotation matrices

The Wigner rotation elements (command wignerD)
are defined as

Dl
m0;mða; b; cÞ ¼ expð�iam0 � icmÞdl

m0;mðbÞ ð28Þ
and the reduced rotation elements (command redu-

cedD) are defined as

dl
m0 ;mðbÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþm0Þ!ðl�m0Þ!ðlþmÞ!ðl�mÞ!

p
�

X
s

ð�1Þm
0�mþs cosb

2

� �2lþm�m0�2s
sinb

2

� �m0�mþ2s

ðlþm� sÞ!s!ðm0 �mþ sÞ!ðl�m0 � sÞ! .

ð29Þ
The summation over s includes only terms for which the
arguments of the factorials are non-negative [7,8].

wignerRotMtx[l,a,b,c] produces the full rota-
tion matrix of rank l.

Another rotation parameterization is also provided in
the function dER: The Euler–Rodriguez parameteriza-
tion is useful if the axis of rotation and the rotation an-
gle are specified (as opposed to the Euler angles) [13,14].
The rotation element is calculated by

Dl;ER
m0;mðh;nÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþm0Þ!ðl�m0Þ!ðlþmÞ!ðl�mÞ!

p
�

X
s

aj�m0�sða�Þjþm�sð�bÞm
0�mþsðb�Þs

ðlþm� sÞ!s!ðm0 �mþ sÞ!ðl�m0 � sÞ! .

ð30Þ
where h is the rotation angle around the axis described
by the normalized vector n = (n1,n2,n3), and

a ¼ cosðh=2Þ þ in3 sinðh=2Þ;
b ¼ n2 sinðh=2Þ þ in1 sinðh=2Þ.

ð31Þ

Note that Dl;ER
m0 ;m½b; ð0; 1; 0Þ� ¼ dl

m0 ;mðbÞ.
The relationship between the Euler and the Euler–

Rodriguez angles is given as:[13]

cosðh=2Þ ¼ cosðb=2Þ cos cþ a
2

;

n1 sinðh=2Þ ¼ sinðb=2Þ sin c� a
2

;

n2 sinðh=2Þ ¼ sinðb=2Þ cos c� a
2

;

n3 sinðh=2Þ ¼ cosðb=2Þ sin cþ a
.

ð32Þ
2

7.2. Rotation of spatial and spin tensors

Spatial tensors are rotated using the function
rotateSpatial[x, i,a,b,c], where i specifies the spin
index or indices, and a,b,c the Euler angles. As discussed
above, rotations from the principal-axis system can be
performed using the makeSpatialQ, makeS-

patialCSA, and makeSpatialD functions. So, for
example, makeSpatialD[wD,1,2,d,0,b,0] sets
up the dipolar coupling tensor between spins one and
two, rotated from the principal-axis system by an angle
b. The subsequent command makeHDD[1,2,0] creates
the secular part of the dipolar coupling as follows:

1
4
ð1þ 3cos2bÞd T ð1Þ

1;�1.T
ð2Þ
1;1 þ 2T ð1Þ

1;0.T
ð2Þ
1;0þ T ð1Þ

1;1.T
ð2Þ
1;�1

h i
. ð33Þ

Rotation matrices for the product spin space are ob-
tained using the function spinRotMtx[i,a,b,c]. The
following commands will produce an Euler rotation of
spin 1 in the operator T ð1Þ

2;2.I2z by (a,b,c) = (p,p/2,p/2):

setSpinSys[1,1/2]

R=spinRotMtx[1,Pi,Pi/2,Pi/2]

out1=mrep[ispinT[1,2,2].ispinC[2,z]]

out2=R.out1.dagger[R]

out3=spinTDecomposition[out2]

where dagger returns the Hermitian conjugate matrix.
The result of this calculation is

1
4

h
� T ð1Þ

2;�2.T
ð2Þ
1;0 þ 2T ð1Þ

2;�1.T
ð2Þ
1;0 �

ffiffiffi
6

p
T ð1Þ

2;0.T
ð2Þ
1;0 þ 2T ð1Þ

2;1.T
ð2Þ
1;0

� T ð1Þ
2;2.T

ð2Þ
1;0

i
. ð34Þ
7.3. Rf pulses

For convenience, rf-pulses can be applied to matrices
via the function pulse[mtx,i,a,/,w]. This will per-
form a pulse on the i-spin subspace of flip angle a, phase
/, where the effective field is tilted by the angle w from
the transverse plane. If w = 0 this represents an on-reso-
nance pulse. For example
setSpinSys[3/2,3/2]

a=mrep[ispinC[1,z].ispinC[2,z]];

b=pulse[a,1,Pi/4,0,0]

spinTDecomposition[b]

gives

1
2
iT ð1Þ

1;�1.T
ð2Þ
1;0 þ

ffiffiffi
2

p
T ð1Þ

1;0.T
ð2Þ
1;0 þ iT ð1Þ

1;1.T
ð2Þ
1;0

h i
. ð35Þ
8. Redfield relaxation matrix elements

Using the expansion of the density matrix into mutu-
ally orthogonal operators Qi of the form
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qðtÞ ¼
X
i

miðtÞQi; ð36Þ

the relaxation dynamics can be written in the form

miðtÞ ¼ �
X
j

Ci;jmjðtÞ. ð37Þ

The interactions responsible for relaxation are written as

H 1 ¼
X
r

X
m

ð�1ÞmF r
mðtÞAr

m ð38Þ

where r is an index that runs through the individual
mechanisms (dipolar, CSA, quadrupolar, etc.). The
operators Ar

m can be expanded in terms of a basis Ar
m;p

Ar
m ¼

X
m

Ar
m;p ð39Þ

such that

½H 0;A
r
m;p� ¼ xm;pA

r
m;p. ð40Þ

It also follows that xm,p = �x�m,p.
Given these definitions,Ci,j can be evaluated by [15–18]

Ci;j ¼
1

2

X
r;r0

X
p;m

Jr0

r ðxm;pÞ
Tr ½Ar

m;p;Qi�
y½Ar0

m;p;Qj�
n o

Tr Qy
i Qi

� � . ð41Þ

The function RedfieldCoeff calculates these coeffi-
cients for two given operators Qi and Qj.

In order for this to work properly one needs to indicate
which interactions should be considered for the relaxation
mechanisms, and whether homo- or heteronuclear cases
are involved. This is done by using the functionset-
SpinSys[I1,I2, . . .,w1,w2, . . .,hamiltonian-
list] to set up the spin system. w1, w2, etc. are the
Larmor frequencies, which may be just symbols without
an assigned value. If the same variable is used for different
spins, then automatically a homonuclear case is assumed
[15]. hamiltonianlist contains a list defining the
types of Hamiltonians to be considered as relaxation
mechanisms.

As an example, we calculate here the TROSY [19]
relationships for the two transitions I1�.I2a and I1�.I2b.
These correspond to the transitions labeled S�

12 and S�
34

in [19]. The dipolar coupling and the two CSA interac-
tions are considered as relaxation mechanisms.
DD;2;3 2 3
setSpinSys[{1/2,1/2},{w1,w2},
{��DD",1,2,��CS",1, ��CS",2}];

S12=ispinC[1,m].ispinST[2,�1/2,�1/2];

S34=ispinC[1,m].ispinST[2,1/2,1/2];

S12rate=RedfieldCoeff[S12,S12];

S34rate=RedfieldCoeff[S34,S34];

The results are

S12rate¼ 1

8
4JCS;1

CS;1ð0Þ þ 3JCS;1
CS;1ðx1Þ þ 3JCS;2

CS;2ðx2Þ
h

þ8JCS;1
DD;1;2ð0Þ � 6JCS;1

DD;1;2ðx1Þ þ 4JDD;1;2
DD;1;2ð0Þ

þ3JDD;1;2
DD;1;2ðx1Þ þ JDD;1;2

DD;1;2ðx1 �x2Þ
þ3JDD;1;2

DD;1;2ðx2Þ þ 6JDD;1;2
DD;1;2ðx1 þx2Þ

i
ð42Þ
and

S34rate ¼ 1

8
4JCS;1

CS;1ð0Þ þ 3JCS;1
CS;1ðx1Þ þ 3JCS;2

CS;2ðx2Þ
h

þ8JCS;1
DD;1;2ð0Þ þ 6JCS;1

DD;1;2ðx1Þ þ 4JDD;1;2
DD;1;2ð0Þ

þ3JDD;1;2
DD;1;2ðx1Þ þ JDD;1;2

DD;1;2ðx1 � x2Þ þ 3JDD;1;2
DD;1;2ðx2Þ

þ6JDD;1;2
DD;1;2ðx1 þ x2Þ

i
. ð43Þ

The cross-correlation spectral density functions, dis-
played as J r

r0 ðxÞ, or rather as J int2
int1ðxÞ can be set via

the function sdfJ[int1,int2,w], where int1 and
int2 specify the interactions considered. For isotropic
tumbling with a correlation time sc and no internal mo-
tion it is given by [17,18]

J r
r0 ðxÞ ¼ crcr0P 2ðcos hr;r0 Þ

2

5

sc
1þ ðxscÞ2

; ð44Þ

where hr;r0 is the angle between the largest principal-axis
components of the two interactions, and the constants cr
are defined (in accordance with the definitions of the
Hamiltonians above) as

cr ¼
� l0

4p

cicj�h
r3 if r ¼ dipolar

2
3
Dr if r ¼ CSAffiffi
3
2

q
e2qQ

�h2Ið2I�1Þ if r ¼ quadrupolar

.

8>><
>>: ð45Þ

Another, perhaps more elaborate example shows the
calculation of several cross- and auto-relaxation rates
for a heteronuclear spin system containing two 1/2 spins
and one 1 spin. In this case, we consider all dipolar, all
CSA, and the quadrupolar interactions for the relaxation
processes.
setSpinSys[{1/2,1,1/2}, {w1,w2,w3},
{"DD",1,2, ��DD",1,3, ��DD",2,3,
��CS",1, ��CS",2, ��CS",3, ��Q",2}]

out1=RedfieldCoeff[ispinC[1,x],

ispinC[1,x].ispinC[2,z]]

out2=RedfieldCoeff[ispinC[2,x],

ispinC[2,x].ispinC[1,z]]

out3=RedfieldCoeff[ispinC[2,x],

ispinC[2,x]]

The results are

out1 ¼ 4
3
JCS;1
DD;1;2ð0Þ þ JCS;1

DD;1;2ðx1Þ;

out2 ¼ 1
8
JCS;1
DD;1;2ð0Þ þ 3JCS;1

DD;1;2ðx2Þ
h i

;

out3 ¼ 1
8
4JCS;2

CS;2ð0Þ þ 3JCS;2
CS;2ðx2Þ þ 6JQ;2

Q;2ð0Þ þ 10JQ;2
Q;2ðx2Þ

h
þ4JQ;2

Q;2ð2x2Þ þ 4JDD;1;2
DD;1;2ð0Þ þ 6JDD;1;2

DD;1;2ðx1Þ
þJDD;1;2

DD;1;2ðx1 � x2Þ þ 3JDD;1;2
DD;1;2ðx2Þ

þ6JDD;1;2
DD;1;2ðx1 þ x2Þ þ 4JDD;2;3

DD;2;3ð0Þ þ 3JDD;2;3
DD;2;3ðx2Þ

þJDD;2;3
DD;2;3ðx2 � x3Þ þ 6JDD;2;3

DD;2;3ðx3Þ

þ6JDD;2;3ðx þ x Þ
i
. ð46Þ
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9. Evolution and calculation of spectra

Although it is not one of the major objectives of this
package to perform numerical calculations, some func-
tions are added to help in calculating spectra or to per-
form time propagation of operators. For example,
evolve[rho,H,t] calculates the time evolution of
rho under the action of the Hamiltonian H for a time t.
Similarly, the function acquire[rho,H,dt,A,N]

assembles a series of N data points in a vector, where the
time evolution of rho is governed by H, the sampling
interval is dt, and the detection operator is A.

Numerical calculations are usually not as rapid in
Mathematica as they are with dedicated numerical pack-
ages, and the calculation of time evolution may be slow,
especially for larger spin systems. A function was there-
fore added, which calculates the spectra directly from
the combination of Hamiltonian, initial density operator,
and detection operator. This is performed by diagonaliz-
ing the Hamiltonian first, then putting both the initial
density operator and the detection operator into the
Hamiltonian basis. The transition frequencies between
the states i and j are then given by (Hii � Hjj)/2p, and
the amplitudes byAijqji, where q is the initial density oper-
ator, and A the detection operator. This is performed via
the getspec[rho,H,A,N,frange] statement,
whereN is the number of points to be used in the spectrum,
and frange specifies the frequency range to be used.

The following example calculates a proton spectrum
of benzene in a liquid crystal, with the benzene ring ar-
ranged perpendicularly with respect to the magnetic
field. Here, we assume an order parameter of 0.01 and
bond lengths of 1.39 (C–C) and 1.09 Å (C–H). The code
below sets up the spin system and calculates the dipolar
coupling constants.

setSpinSys[{1/2,1/2,1/2,1/2,1/2,1/2}];
coord=2.48*10ˆ(�10)Table[Cos[a],

Sin[a],{a,0,2Pi–2Pi/n,2Pi/n}];
orderpar=0.01;

mu0pi=10ˆ(�7);

hbar=1.05457*10ˆ(�34);
Fig. 1. Calculated proton spectrum of benzene in a liquid crystal.
gammaH=2.67522*ˆ 8;
prefactor=-orderpar*mu0pi*gammaHˆ 2*hbar;

calcDD[n_]:=
Module[{distance},

For[i=1,i<=(n+1),i++,
For[j=i+1,j<=n,j++,

distance=

Sqrt[(coord[[i,1]]-

coord[[j,1]])ˆ 2
+(coord[[i,2]]-

coord[[j,2]])ˆ 2];
wD[i,j,0]=0.5*prefactor/

distanceˆ 3;
(*factor 0.5 for perpendicular

arrangement*)

]

]

];

calcDD[6];

The code below calculates the Hamiltonian contain-
ing all dipolar couplings and calculates and displays
the spectrum.

TotalHDD[n_]:=Sum[Sum[makeHDD[i,j,0],
{i, j+1,n}],{j,1,n}];

H0=TotalHDD[6]//mrep;

{scale,spec} =

getspec[mrep[ispinC[1,X]], H0,

mrep[ispinC[1,m]],1000,

{�300,300}];
spec = speclb[spec,5];

plotspec[scale,spec]

The speclb command is used to add some line-
broadening to the spectrum. The resulting spectrum is
shown in Fig. 1.
10. Mathematica details

10.1. Computational limits

The package itself does not limit the numbers of
spins in a spin system, but clearly computational and
memory resources impose an upper bound on the size
of a manageable calculation. As an indication of per-
formance of this package we give here the memory
and CPU time usage for the calculation of the Redfield
coefficients shown in the example of the previous sec-
tion. The memory indications are recorded via Math-
ematica�s MemoryInUse[] statement. These numbers
do not reflect temporary or peak memory usage. The
CPU time is recorded from Mathematica�s Timing

statement.
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The calculations were performed on a PC with In-
tel Pentium III, 850 MHz, 128 MB RAM, running Li-
nux 2.4.20 and Mathematica 4.2. Reading in the
package with <<MathNMR.m uses 167 kb of memory.
The setSpinSys statement uses 1.5 s CPU time and
728 kb of memory. This command is used to set up
the spin system, to create all Hamiltonian matrix rep-
resentations for later use, and sort these according to
the transition frequencies that they induce. The calcu-
lations of out1, out2, and out3 use each approxi-
mately 20 s CPU time, and 238, 92, and 44 kb of
memory, respectively.

10.2. Compatibility and syntax

The package was tested with Mathematica version
4.2. It appears to run on version 3.0, however, the out-
put formatting does not always produce the desired re-
sults. This can probably be fixed by adapting the
Format statements in the package to version 3.0.

The product between the spin operators is denoted by
the regular dot product. This choice makes it easier to
calculate the matrix representations. It is essential to
not confuse this product with the regular product (aster-
isk or blank in Mathematica), since then the mrep func-
tion will not work properly. In this case, Mathematica
would try to multiply the matrices element-wise.
11. Conclusions

A Mathematica package is described which per-
forms symbolic calculations of many spin and spatial
tensor manipulations that are commonly used to de-
scribe NMR experiments. Such tasks as basis change,
rotations, and the calculation of commutators, opera-
tor decompositions, and Redfield matrix elements can
be performed very conveniently for different spin sys-
tems. Major future developments of the package may
include the calculation of operator expressions using
subspaces to decrease the computational limits. Minor
additions may include the calculation of Redfield ele-
ments in tilted frames and the calculation of Average
Hamiltonian expansions. The package will be avail-
able for download, including the documentation of
the individual functions and examples of the
calculations.
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